Quantum Volume Benchmark

List of acronyms

CE: Constructor Evaluation (checked if the evaluation is done by the chip manufacturer)
SP: Scientific paper (checked if a scientific paper explain the results)

For clarity the Quantum Volum is expressed in a logarithmic basis.

Ref Company Year CE SP #Circ Shots CPU / QPU Technology Chip qubits QV Comment
[1] AQT 2023/02 x Pine System Superconducting 24 7 Not any information about the protocol
[2] IBM 2020/07 x x Johannesburg Superconducting 20 5 initial protocol [3]
[4] IBM 2020/09 x x Montreal Superconducting 27 6 initial protocol [3]
[5] IBM 2022/12 x sherbrooke (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x sherbrooke (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x brisbane (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x brisbane (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x osaka (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x osaka (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x kyoto (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x kyoto (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x Quebec (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x kawasaki (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x rensselaer (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x kyiv (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x cleveland (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x nazca (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2022/12 x cusco (Eagle r3) Superconducting 127 7 initial protocol [3]
[5] IBM 2023/12 x torino (Heron r1) Superconducting 133 9 initial protocol [3]
[6] IonQ 2022/03 x 1000 20 Harmony Trapped-ions 11 3 initial protocol [3]
[6] OQC 2022/03 x 1000 20 Lucy Superconducting 8 0 initial protocol [3]
[6] Rigetti 2022/03 x 1000 20 Aspen-11 Superconducting 38 2 initial protocol [3]
[6] Rigetti 2022/03 x 1000 20 Aspen-M-1 Superconducting 80 3 initial protocol [3]
[6] Quantinuum 2022/03 x 1000 20 H1-2 Trapped-ions 12 9 initial protocol [3]
[7] [8] Quantinuum 2020/06 x x 400 100 H0 Trapped-ions 6 initial protocol [3]
[9] [8] Quantinuum 2020/09 x H1-1 Trapped-ions 7 initial protocol [3]
[8] Quantinuum 2021/03 x H1-1 Trapped-ions 9 initial protocol [3]
[8] Quantinuum 2021/07 x H1-1 Trapped-ions 10 initial protocol [3]
[10] [8] Quantinuum 2021/09 x 2000 5 H1-2 Trapped-ions 11 initial protocol [3]
[11] [8] Quantinuum 2022/04 x 200 100 H1-2 Trapped-ions 12 initial protocol [3]
[12] [8] Quantinuum 2022/09 x 220 90 H1-1 Trapped-ions 13 protocol [13]
[8] Quantinuum 2021/01 x H1-1 Trapped-ions 14 protocol [13]
[14] [8] Quantinuum 2021/01 x 100 200 H1-1 Trapped-ions 15 protocol [13]
[8] Quantinuum 2023/04 x H2-1 Trapped-ions 15 protocol [13]
[15] [8] Quantinuum 2023/04 x x 200 100 H2-1 Trapped-ions 16 protocol [13]
[8] Quantinuum 2023/03 x H1-1 Trapped-ions 16 protocol [13]
[11] [8] Quantinuum 2023/05 x H1-1 Trapped-ions 17 protocol [13]
[11] [8] Quantinuum 2023/05 x H1-1 Trapped-ions 18 protocol [13]
[11] [8] Quantinuum 2023/06 x H1-1 Trapped-ions 19 protocol [13]
[8] Quantinuum 2023/10 x H1-2 Trapped-ions 15 protocol [13]
[8] Quantinuum 2024/04 x H1-1 Trapped-ions 20 protocol [13]
[8] Quantinuum 2024/05 x H2-1 Trapped-ions 18 protocol [13]

Quantum Volume protocol

The Quantum Volume (QV) [16], [3] is a benchmarking protocol used to measure the ability of circuit-based quantum computers to simulate quantum circuits. This protocol gathers in a single metric number, the maximum width and depth that a quantum computer can successfully implement. A quantum computer has to sucessfully solve the Heavy Output Generation (HOG) problem [17] of size \(n\) to validate a quantum volume of size \(2^n\).

Receipe for a Quantum Volume Experiment:

This circuit is then used as input for the sampling task associated to the Heavy Output Generation (HOG) problem. If the quantum computer is able to sample the right distribution, it validates the associated quantum volume score of \(2^n\).

Assumptions

Elements of the quantum stack being benchmarked

Protocol complexity

The complexity of the HOG problem is exponential either in time or space for a classical computer. For further details on the complexity the reader may refer to [17].

References

  1. [1]AQT, “State of quantum computing in Europe: AQT pushing performance with a quantum volume of 128.” 2023 [Online]. Available at: https://www.aqt.eu/aqt-pushing-performance-with-a-quantum-volume-of-128/
  2. [2]N. Sundaresan, I. Lauer, E. Pritchett, E. Magesan, P. Jurcevic, and J. M. Gambetta, “Reducing unitary and spectator errors in cross resonance with optimized rotary echoes,” PRX Quantum, vol. 1, no. 2, p. 020318, 2020.
  3. [3]A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, “Validating quantum computers using randomized model circuits,” Physical Review A, vol. 100, no. 3, p. 032328, 2019.
  4. [4]P. Jurcevic et al., “Demonstration of quantum volume 64 on a superconducting quantum computing system,” Quantum Science and Technology, vol. 6, no. 2, p. 025020, 2021.
  5. [5]IBM, “Processor types.” 2024 [Online]. Available at: https://docs.quantum.ibm.com/run/processor-types
  6. [6]E. Pelofske, A. Bärtschi, and S. Eidenbenz, “Quantum volume in practice: What users can expect from nisq devices,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1–19, 2022.
  7. [7]J. M. Pino et al., “Demonstration of the trapped-ion quantum CCD computer architecture,” Nature, vol. 592, no. 7853, pp. 209–213, 2021.
  8. [8]Quantinuum, “Quantuum Hardware Quantum Volume Data.” 2024 [Online]. Available at: https://github.com/CQCL/quantinuum-hardware-quantum-volume
  9. [9]Honeywell, “Achieving quantum volume 128 on the Honeywell Quantum Computer.” 2020 [Online]. Available at: https://www.honeywell.com/us/en/news/2020/09/achieving-quantum-volume-128-on-the-honeywell-quantum-computer
  10. [10]Quantinuum, “Demonstrating Benefits of Quantum Upgradable Design Strategy: System Model H1-2 Frist to Prove 2048 Quantum Volume.” 2021 [Online]. Available at: https://www.quantinuum.com/news/demonstrating-benefits-of-quantum-upgradable-design-strategy-system-model-h1-2-first-to-prove-2-048-quantum-volume
  11. [11]Quantinuum, “Quantinuum Announces Quantum Volume 4096 Achievement.” 2022 [Online]. Available at: https://www.quantinuum.com/news/quantinuum-announces-quantum-volume-4096-achievement
  12. [12]Quantinuum, “Quantinuum Sets New Record with Highest Ever Quantum Volume.” 2022 [Online]. Available at: https://www.quantinuum.com/news/quantinuum-sets-new-record-with-highest-ever-quantum-volume
  13. [13]C. H. Baldwin, K. Mayer, N. C. Brown, C. Ryan-Anderson, and D. Hayes, “Re-examining the quantum volume test: Ideal distributions, compiler optimizations, confidence intervals, and scalable resource estimations,” Quantum, vol. 6, p. 707, 2022.
  14. [14]Quantinuum, “Quantum Volume reaches 5 digits for the first time: 5 perspectives on what it means for quantum computing.” 2023 [Online]. Available at: https://www.quantinuum.com/news/quantum-volume-reaches-5-digits-for-the-first-time-5-perspectives-on-what-it-means-for-quantum-computing
  15. [15]S. A. Moses et al., “A race-track trapped-ion quantum processor,” Physical Review X, vol. 13, no. 4, p. 041052, 2023.
  16. [16]L. S. Bishop, S. Bravyi, A. Cross, J. M. Gambetta, and J. Smolin, “Quantum volume,” Quantum Volume. Technical Report, 2017.
  17. [17]S. Aaronson and L. Chen, “Complexity-theoretic foundations of quantum supremacy experiments,” arXiv preprint arXiv:1612.05903, 2016.