Quantum Error Correction Code implementations

Quantum error correction is expected to be essential for achieving a quantum advantage over classical methods. Each quantum error correction code (QECC) is described by three parameters \([[ n, k, d ]]\), where \(k\) logical qubits are encoded into \(n\) physical qubits. The distance of the code is specified by the parameter \(d\), which determines the code’s ability to detect and correct errors. Classical error correction codes are defined by the same parameters but only with single brackets \([ n, k, d ]\). In quantum computing, repetition codes are considered classical, as they can detect either bit-flip or phase-flip errors but not arbitrary combinations of both. Each QECC is characterized by an error threshold \(p_{th}\), beyond which the quantum error correction method becomes ineffective — meaning that the error correction process introduces more errors than it mitigates. For a successful implementation, all physical quantum operations must exhibit error rates below this threshold. When the physical error rate is much smaller than the threshold, the error rate of the logical qubit \(\epsilon_{log}\) is expected to decrease with the code distance exponentially:

\[\epsilon_\mathrm{log} \propto \left( \frac{p}{p_\mathrm{th}} \right)^{(d+1)/2}\]

One popular method for quantum error correction is stabilizer codes, which constitute the majority of the quantum codes presented in the following table. In this framework, the logical state is encoded across multiple physical qubits with a specific initialization procedure. The logical qubits are then repeatedly stabilized with several syndrome measurements that permit the extraction of errors (and eventually their correction). This stabilization process occurs at regular intervals throughout the computation. The stabilization process is considered active when syndrome extraction and correction are carried out dynamically during the execution of the quantum circuit. In contrast, the approach is referred to as passive when error detection and correction are deferred after the final measurement (it is sometimes called post-selection). At scale, a stabilizer QECC must be active, which is obviously harder to implement as it requires low syndrome decoding latency with efficient dynamic corrections (sometimes, the correction can be transferred at the end of the circuit).

In general, a large set of logical operations can be efficiently implemented using transversal operations, wherein applying a logical gate to a logical qubit corresponds to the independent application of that gate to each constituent physical qubit. However, a universal logical gate set requires at least one non-transversal gate, which is difficult to realize in practice and involves the preparation of specific states called magic states. Magic state distillation is a process that enhances the fidelity of a magic state.

The following table summarizes experimental implementations of QECC conducted on real quantum hardware. Part of the presented data is adapted from the comparative study by R. Larose [1].

Date & Ref Affiliation Hardware Code Code \(n, k, d\) # Ancillas
Per log
#logical qubits Max #cycles
Feedback loop
Transversal
Logic gate
Non-transversal
Logic gates
Magic state
Preparation
Magic state
Distillation
1998 [2] MIT, LANL,
Hardvard
NMR Repetition \([3, 1, 3]\) 1 no no no no
2001 [3] LANL NMR Perfect [4] \([[5, 1, 3]]\) 1 no no no no
2004 [5] NIST Trapped-ions Repetition \([3, 1, 3]\) 1 no no no no
2011 [6] Innsbruck Univ
et al.
Trapped-ions Repetition \([3, 1, 3]\) 1 3 no no no no
2011 [7] Waterloo Univ NMR Repetition \([3, 1, 3]\) 1 2 no no no no
2012 [8] Dortmund Univ
Waterloo Univ
NMR Perfect [4] \([[5, 1, 3]]\) 1 yes yes no no
2012 [9] Yale Univ
Delft Univ
Superconducting Repetition \([3, 1, 3]\) 1 no no no no
2014 [10] Britsol Univ
et al.
Photonic Graph state \([[4, 1, 2]]\) 1 1 no no no no
2014 [11] Google
et al.
Superconducting Repetition \([5, 1, 5]\) 4 1 8 no no no no
2014 [12] Innsbruck Univ
et al.
Trapped-ions Steane [13] \([[7, 1, 3]]\) 1 yes no no no
2014 [14] Stuttgart Univ
et al.
NV center Repetition \([3, 1, 3]\) 1 no no no no
2015 [15] QuTech Superconducting Repetition \([3, 1, 3]\) 2 1 no no no no
2015 [16] IBM Superconducting Repetition \([2, 0, 2]\) 2 1 no no no no
2015 [17] QuTech
et al.
NV center Repetition \([3, 1, 3]\) 1 1 no no no no
2017 [18] IBM Superconducting Detection code [19] \([[4, 2, 2]]\) 1 1 no no no no
2017 [20] Maryland Univ
IonQ
et al.
Trapped-ions Detection code [19] \([[4, 2, 2]]\) 1 1 yes no no no
2018 [21] Basel Univ Superconducting Repetition \([8, 1, 8]\) 7 1 1 yes no no no
2019 [22] Hefei Univ
et al.
Superconducting Perfect [4] \([[5, 1, 3]]\) 0 1 no no no no
2019 [23] Sydney Univ Superconducting Detection code [19] \([[4, 2, 2]]\) 0 1 yes yes no no
2020 [24] IBM Superconducting Repetition \([22, 1, 22]\) 21 1 no no no no
2020 [25] ETH Zurich Superconducting Surface \([[4, 1, 2]]\) 3 1 10 no no no no
2020 [26] Maryland Univ
et al.
Trapped-ions Bacon-Shor \([[9, 1, 3]]\) 4 1 1 yes no yes no
2020 [27] Hefei Univ
et al.
Photonic Bacon-Shor \([[9, 1, 3]]\) 2 1 1 yes yes yes no
2021 [28] Google Superconducting Repetition \([11, 1, 11]\) 10 1 50 no no no no
2021 [28] Google Superconducting Surface \([[4, 1, 2]]\) 3 1 15 no no no no
2021 [29] Quantinuum Trapped-ions Steane [13] \([[7, 1, 3]]\) 3 1 6 yes yes yes no
2022 [30] Quantinuum Trapped-ions Perfect [4] \([[5, 1, 3]]\) 2 2 no yes no no
2022 [30] Quantinuum Trapped-ions Steane [13] \([[7, 1, 3]]\) 1 2 yes no no no
2022 [31] Shanghai Univ
et al.
Superconducting Surface \([[9, 1, 3]]\) 8 1 11 no no no no
2022 [32] ETH Zurich
et al.
Superconducting Surface \([[9, 1, 3]]\) 8 1 16 no no no no
2022 [33] QuTech
et al.
NV center Perfect [4] \([[5, 1, 3]]\) 2 1 1 yes no no no
2023 [34] Google Superconducting Repetition \([25, 1, 25]\) 24 1 no no no no
2023 [34] Google Superconducting Surface \([20, 1, 5]]\) 24 1 25 no no no no
2023 [35] Toronto Univ
et al.
Superconducting
ibmq_mumbaï
CSS \([[8, 3, 2]]\) 0 3 yes no no no
2023 [35] Toronto Univ
et al.
Trapped-ions
ionq-11q
CSS \([[8, 3, 2]]\) 0 3 yes no yes no
2023 [36] QuTech
Quantinuum
Trapped-ions CSS \([[8, 3, 2]]\) 2 3 yes yes no no
2024 [37] Microsoft
Quantinuum
Trapped-ions Steane [13] \([[7, 1, 3]]\) 3 2 1 yes no no no
2024 [37] Microsoft
Quantinuum
Trapped-ions Concatenated [37] \([[12, 2, 4]]\)
\([[4, 2, 2]]\) & \([[6, 2, 2]]\)
3 2 3 yes no no no
2024 [38] Harvard
QuERA
Et al.
Neutral atoms Surface \([[49, 1, 7]]\) 20 2 yes no no no
2024 [38] Harvard
QuERA
Et al.
Neutral atoms Code block \([[8, 3, 2]]\) 0 48 yes no no no
2024 [39] Google
et al.
Superconducting Surface \([[49, 1, 7]]\) 48 1 250 no no no no
2024 [39] Google
et al.
Superconducting Repetition \([29, 1, 29]\) 28 1 no no no no
2024 [39] Google
et al.
Superconducting Surface \([20, 1, 5]]\) 24 1 5000000 no no no no
2024 [40] Quantinuum Trapped-ions Concatenated \([[10, 1, 4]]\)
\([[2, 1, 1]]\) & \([[5, 1, 3]]\)
1 10 no no no no

References

  1. [1]R. LaRose, “A brief history of quantum vs classical computational advantage,” arXiv preprint arXiv:2412.14703, 2024.
  2. [2]D. G. Cory et al., “Experimental quantum error correction,” Physical Review Letters, vol. 81, no. 10, p. 2152, 1998.
  3. [3]E. Knill, R. Laflamme, R. Martinez, and C. Negrevergne, “Benchmarking Quantum Computers: The Five-Qubit Error Correcting Code,” Physical Review Letters, vol. 86, no. 25, pp. 5811–5814, Jun. 2001, doi: 10.1103/physrevlett.86.5811. [Online]. Available at: http://dx.doi.org/10.1103/PhysRevLett.86.5811
  4. [4]R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek, “Perfect Quantum Error Correcting Code,” Physical Review Letters, vol. 77, no. 1, pp. 198–201, Jul. 1996, doi: 10.1103/physrevlett.77.198. [Online]. Available at: http://dx.doi.org/10.1103/PhysRevLett.77.198
  5. [5]J. Chiaverini et al., “Realization of quantum error correction,” Nature, vol. 432, no. 7017, pp. 602–605, Dec. 2004, doi: 10.1038/nature03074. [Online]. Available at: http://dx.doi.org/10.1038/nature03074
  6. [6]P. Schindler et al., “Experimental Repetitive Quantum Error Correction,” Science, vol. 332, no. 6033, pp. 1059–1061, May 2011, doi: 10.1126/science.1203329. [Online]. Available at: http://dx.doi.org/10.1126/science.1203329
  7. [7]O. Moussa, J. Baugh, C. A. Ryan, and R. Laflamme, “Demonstration of Sufficient Control for Two Rounds of Quantum Error Correction in a Solid State Ensemble Quantum Information Processor,” Physical review letters, vol. 107, no. 16, p. 160501, 2011.
  8. [8]J. Zhang, R. Laflamme, and D. Suter, “Experimental Implementation of Encoded Logical Qubit Operations in a Perfect Quantum Error Correcting Code,” Physical review letters, vol. 109, no. 10, p. 100503, 2012.
  9. [9]M. D. Reed et al., “Realization of three-qubit quantum error correction with superconducting circuits,” Nature, vol. 482, no. 7385, pp. 382–385, 2012.
  10. [10]B. A. Bell, Herrera-Martı́ DA, M. S. Tame, D. Markham, W. J. Wadsworth, and J. G. Rarity, “Experimental demonstration of a graph state quantum error-correction code,” Nature communications, vol. 5, no. 1, p. 3658, 2014.
  11. [11]J. Kelly et al., “State preservation by repetitive error detection in a superconducting quantum circuit,” Nature, vol. 519, no. 7541, pp. 66–69, 2015.
  12. [12]D. Nigg et al., “Quantum computations on a topologically encoded qubit,” Science, vol. 345, no. 6194, pp. 302–305, 2014.
  13. [13]A. M. Steane, “Error Correcting Codes in Quantum Theory,” Physical Review Letters, vol. 77, no. 5, pp. 793–797, Jul. 1996, doi: 10.1103/physrevlett.77.793. [Online]. Available at: http://dx.doi.org/10.1103/PhysRevLett.77.793
  14. [14]G. Waldherr et al., “Quantum error correction in a solid-state hybrid spin register,” Nature, vol. 506, no. 7487, pp. 204–207, 2014.
  15. [15]D. Riste et al., “Detecting bit-flip errors in a logical qubit using stabilizer measurements,” Nature communications, vol. 6, no. 1, p. 6983, 2015.
  16. [16]A. D. Córcoles et al., “Demonstration of a quantum error detection code using a square lattice of four superconducting qubits,” Nature Communications, vol. 6, no. 1, Apr. 2015, doi: 10.1038/ncomms7979. [Online]. Available at: http://dx.doi.org/10.1038/ncomms7979
  17. [17]J. Cramer et al., “Repeated quantum error correction on a continuously encoded qubit by real-time feedback,” Nature communications, vol. 7, no. 1, p. 11526, 2016.
  18. [18]M. Takita, A. W. Cross, A. D. Córcoles, J. M. Chow, and J. M. Gambetta, “Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits,” Physical Review Letters, vol. 119, no. 18, Oct. 2017, doi: 10.1103/physrevlett.119.180501. [Online]. Available at: http://dx.doi.org/10.1103/PhysRevLett.119.180501
  19. [19]D. Gottesman, “Quantum fault tolerance in small experiments,” arXiv preprint arXiv:1610.03507, 2016.
  20. [20]N. M. Linke et al., “Fault-tolerant quantum error detection,” Science Advances, vol. 3, no. 10, Oct. 2017, doi: 10.1126/sciadv.1701074. [Online]. Available at: http://dx.doi.org/10.1126/sciadv.1701074
  21. [21]J. R. Wootton and D. Loss, “Repetition code of 15 qubits,” Physical Review A, vol. 97, no. 5, May 2018, doi: 10.1103/physreva.97.052313. [Online]. Available at: http://dx.doi.org/10.1103/PhysRevA.97.052313
  22. [22]M. Gong et al., “Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits,” National Science Review, vol. 9, no. 1, p. nwab011, 2022.
  23. [23]R. Harper and S. T. Flammia, “Fault-Tolerant Logical Gates in the IBM Quantum Experience,” Physical Review Letters, vol. 122, no. 8, Feb. 2019, doi: 10.1103/physrevlett.122.080504. [Online]. Available at: http://dx.doi.org/10.1103/PhysRevLett.122.080504
  24. [24]J. R. Wootton, “Benchmarking near-term devices with quantum error correction,” Quantum Science and Technology, vol. 5, no. 4, p. 044004, 2020.
  25. [25]C. K. Andersen et al., “Repeated quantum error detection in a surface code,” Nature Physics, vol. 16, no. 8, pp. 875–880, 2020.
  26. [26]L. Egan et al., “Fault-tolerant control of an error-corrected qubit,” Nature, vol. 598, no. 7880, pp. 281–286, Oct. 2021, doi: 10.1038/s41586-021-03928-y. [Online]. Available at: http://dx.doi.org/10.1038/s41586-021-03928-y
  27. [27]Y.-H. Luo et al., “Quantum teleportation of physical qubits into logical code spaces,” Proceedings of the National Academy of Sciences, vol. 118, no. 36, p. e2026250118, 2021.
  28. [28]Z. Chen et al., “Exponential suppression of bit or phase errors with cyclic error correction,” Nature, vol. 595, no. 7867, pp. 383–387, Jul. 2021, doi: 10.1038/s41586-021-03588-y. [Online]. Available at: http://dx.doi.org/10.1038/s41586-021-03588-y
  29. [29]C. Ryan-Anderson et al., “Realization of real-time fault-tolerant quantum error correction,” Physical Review X, vol. 11, no. 4, p. 041058, 2021.
  30. [30]C. Ryan-Anderson et al., “Implementing fault-tolerant entangling gates on the five-qubit code and the color code,” arXiv preprint arXiv:2208.01863, 2022.
  31. [31]Y. Zhao et al., “Realization of an error-correcting surface code with superconducting qubits,” Physical Review Letters, vol. 129, no. 3, p. 030501, 2022.
  32. [32]S. Krinner et al., “Realizing repeated quantum error correction in a distance-three surface code,” Nature, vol. 605, no. 7911, pp. 669–674, 2022.
  33. [33]M. H. Abobeih et al., “Fault-tolerant operation of a logical qubit in a diamond quantum processor,” Nature, vol. 606, no. 7916, pp. 884–889, 2022.
  34. [34]R. Acharya et al., “Suppressing quantum errors by scaling a surface code logical qubit,” Nature, vol. 614, no. 7949, pp. 676–681, Feb. 2023, doi: 10.1038/s41586-022-05434-1. [Online]. Available at: http://dx.doi.org/10.1038/s41586-022-05434-1
  35. [35]D. Honciuc Menendez, A. Ray, and M. Vasmer, “Implementing fault-tolerant non-Clifford gates using the [[8, 3, 2]] color code,” Physical Review A, vol. 109, no. 6, p. 062438, 2024.
  36. [36]Y. Wang et al., “Fault-tolerant one-bit addition with the smallest interesting color code,” Science Advances, vol. 10, no. 29, p. eado9024, 2024.
  37. [37]A. Paetznick et al., “Demonstration of logical qubits and repeated error correction with better-than-physical error rates,” arXiv preprint arXiv:2404.02280, 2024.
  38. [38]D. Bluvstein et al., “Logical quantum processor based on reconfigurable atom arrays,” Nature, vol. 626, no. 7997, pp. 58–65, Dec. 2023, doi: 10.1038/s41586-023-06927-3. [Online]. Available at: http://dx.doi.org/10.1038/s41586-023-06927-3
  39. [39]R. Acharya et al., “Quantum error correction below the surface code threshold,” Nature, vol. 638, no. 8052, pp. 920–926, Dec. 2024, doi: 10.1038/s41586-024-08449-y. [Online]. Available at: http://dx.doi.org/10.1038/s41586-024-08449-y
  40. [40]S. Dasu et al., “Order-of-magnitude extension of qubit lifetimes with a decoherence-free subspace quantum error correction code,” arXiv preprint arXiv:2503.22107, 2025.