Quantum Volume Benchmark

Benchmarking results

List of acronyms
CE: Constructor Evaluation (checked if the evaluation is done by the chip manufacturer)
SP: Scientific paper (checked if a scientific paper explain the results)
#Circ: number of circuits used for the evaluation

For clarity the Quantum Volume is expressed in a logarithmic basis.

Ref Company Year CE SP #Circ Shots CPU / QPU Technology Chip qubits \(\log_2(QV)\) Comment
[2] [3] AQT 2024/08 x 870 IBEX Q1 Trapped-ions 12 7 protocol [4]
[2] [5] AQT 2024/08 x 870 MARMOT Trapped-ions 20 7 protocol [4]
[6] IBM 2020/07 x x Johannesburg Superconducting 20 5 initial protocol [1]
[7] IBM 2020/09 x x Montreal Superconducting 27 6 initial protocol [1]
[8] IBM 2022/12 x sherbrooke (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x sherbrooke (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x brisbane (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x brisbane (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x osaka (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x osaka (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x kyoto (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x kyoto (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x Quebec (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x kawasaki (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x rensselaer (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x kyiv (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x cleveland (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x nazca (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2022/12 x cusco (Eagle r3) Superconducting 127 7 initial protocol [1]
[8] IBM 2023/12 x torino (Heron r1) Superconducting 133 9 initial protocol [1]
[9] IonQ 2022/03 x 1000 20 Harmony Trapped-ions 11 3 initial protocol [1]
[9] OQC 2022/03 x 1000 20 Lucy Superconducting 8 0 initial protocol [1]
[10] Rigetti 2020/01 x Aspen-4 Superconducting 16 3 initial protocol [1]
[9] Rigetti 2022/03 x 1000 20 Aspen-11 Superconducting 38 2 initial protocol [1]
[9] Rigetti 2022/03 x 1000 20 Aspen-M-1 Superconducting 80 3 initial protocol [1]
[9] Quantinuum 2022/03 x 1000 20 H1-2 Trapped-ions 12 9 initial protocol [1]
[11] [12] Quantinuum 2020/06 x x 400 100 H0 Trapped-ions 6 initial protocol [1]
[13] [12] Quantinuum 2020/09 x H1-1 Trapped-ions 7 initial protocol [1]
[12] Quantinuum 2021/03 x H1-1 Trapped-ions 9 initial protocol [1]
[12] Quantinuum 2021/07 x H1-1 Trapped-ions 10 initial protocol [1]
[14] [12] Quantinuum 2021/09 x 2000 5 H1-2 Trapped-ions 11 initial protocol [1]
[15] [12] Quantinuum 2022/04 x 200 100 H1-2 Trapped-ions 12 initial protocol [1]
[16] [12] Quantinuum 2022/09 x 220 90 H1-1 Trapped-ions 13 protocol [4]
[12] Quantinuum 2021/01 x H1-1 Trapped-ions 14 protocol [4]
[17] [12] Quantinuum 2021/01 x 100 200 H1-1 Trapped-ions 15 protocol [4]
[12] Quantinuum 2023/04 x H2-1 Trapped-ions 15 protocol [4]
[18] [12] Quantinuum 2023/04 x x 200 100 H2-1 Trapped-ions 16 protocol [4]
[12] Quantinuum 2023/03 x H1-1 Trapped-ions 16 protocol [4]
[15] [12] Quantinuum 2023/05 x H1-1 Trapped-ions 17 protocol [4]
[15] [12] Quantinuum 2023/05 x H1-1 Trapped-ions 18 protocol [4]
[15] [12] Quantinuum 2023/06 x H1-1 Trapped-ions 19 protocol [4]
[12] Quantinuum 2023/10 x H1-2 Trapped-ions 15 protocol [4]
[12] Quantinuum 2024/04 x H1-1 Trapped-ions 20 protocol [4]
[12] Quantinuum 2024/05 x H2-1 Trapped-ions 18 protocol [4]
[19] Quantinuum 2024/08 x H2-1 Trapped-ions 21 protocol [4]
[20] Quantinuum 2025/05 x H2-1 Trapped-ions 23 protocol [4]
[21] IQM 2024/08 x x Garnet Superconducting 20 5 initial protocol [1]
[22] QuTech 2023/08 x 100 100 Starmon-5 Superconducting 5 2 initial protocol [1]
[23] University 2024/12 x x NV Center 3 3 initial protocol [1]
QV simulated from noise model

Motivation

The main motivation for the Quantum Volume (QV) is to define a pragmatic way to evaluate and compare progress for near-term quantum computing. The QV is a single number figure of merit used to evaluate universal gate-based quantum computers. A quantum computer with a Quantum Volume (QV) of size \(n\) is able to reliably execute a quantum circuit with at most \(n\) qubits with maximum gate depth \(n\) [1].

Protocol

The Quantum Volume (QV) [24] [1] is a benchmarking protocol evaluating the ability of gate-based quantum computers to run quantum circuits reliably. This protocol gathers the maximum circuit width and depth that a quantum computer can successfully implement in a single metric number. A quantum computer has to successfully solve the Heavy Output Generation (HOG) problem [25] of size \(n\) to validate a quantum volume of size \(2^n\). Many criteria may impact the value of the quantum volume: gate fidelity, coherence time, chip topology, and the efficiency of the transpilation method.

Heavy Output Generation problem

The HOG problem is a sampling problem [25] considered hard for classical computers and constitutes a pass/fail test for quantum computers.

The problem is stated as:
Let \(Q\) be a random circuit drawn from a suitable ensemble acting on \(n\) qubits. The quantum state after executing the circuit is denoted \(\ket{\psi}\). Each possible output state \(x \in \{0, 1\}^n\) is measured with probability \(|\left<x|\psi\right>|^2\). The set of output states with a probability greater than the median constitutes the heavy set of outputs associated with the quantum circuit \(Q\).

Quantum Volume circuit

The following steps define how to generate quantum volume circuits:

Quantum circuit for the quantum volume test

This circuit is then used as input for the sampling task associated with the Heavy Output Generation (HOG) problem. If the quantum computer samples the right distribution (simulated classically), it validates the corresponding quantum volume score of \(2^n\). The confidence interval for this evaluation is set to two-sigma (\(97.73 \%\)).

Assumptions

Limitations

Protocol Variations

In [4], the authors argue that the confidence interval built in the initial test [1] is more restrictive than necessary. They propose a new tighter confidence interval that still covers the initial requirement of \(97.73\%\) (using bootstrapping).

In [27], the authors extend the quantum volume protocol to verify the output sampling distribution for large experiments. This method uses parity tests to determine the heavy output probability distribution efficiently.

References

  1. [1]A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, “Validating quantum computers using randomized model circuits,” Physical Review A, vol. 100, no. 3, p. 032328, 2019.
  2. [2]A. Frisch et al., “Trapped-Ion Quantum Computing,” in Quantum Software, Springer Nature Switzerland, 2024, pp. 251–283 [Online]. Available at: http://dx.doi.org/10.1007/978-3-031-64136-7_10
  3. [3]AQT, “IBEX Q1 Our quantum computer system that executes your quantum circuits via cloud access.” 2024 [Online]. Available at: https://www.aqt.eu/products/ibex-q1/
  4. [4]C. H. Baldwin, K. Mayer, N. C. Brown, C. Ryan-Anderson, and D. Hayes, “Re-examining the quantum volume test: Ideal distributions, compiler optimizations, confidence intervals, and scalable resource estimations,” Quantum, vol. 6, p. 707, 2022.
  5. [5]AQT, “MARMOT The first commercial 19-inch rack-mounted quantum computer.” 2024 [Online]. Available at: https://www.aqt.eu/products/marmot/
  6. [6]N. Sundaresan, I. Lauer, E. Pritchett, E. Magesan, P. Jurcevic, and J. M. Gambetta, “Reducing unitary and spectator errors in cross resonance with optimized rotary echoes,” PRX Quantum, vol. 1, no. 2, p. 020318, 2020.
  7. [7]P. Jurcevic et al., “Demonstration of quantum volume 64 on a superconducting quantum computing system,” Quantum Science and Technology, vol. 6, no. 2, p. 025020, 2021.
  8. [8]IBM, “Processor types.” 2024 [Online]. Available at: https://docs.quantum.ibm.com/run/processor-types
  9. [9]E. Pelofske, A. Bärtschi, and S. Eidenbenz, “Quantum volume in practice: What users can expect from nisq devices,” IEEE Transactions on Quantum Engineering, vol. 3, pp. 1–19, 2022.
  10. [10]P. J. Karalekas, N. A. Tezak, E. C. Peterson, C. A. Ryan, M. P. Da Silva, and R. S. Smith, “A quantum-classical cloud platform optimized for variational hybrid algorithms,” Quantum Science and Technology, vol. 5, no. 2, p. 024003, 2020.
  11. [11]J. M. Pino et al., “Demonstration of the trapped-ion quantum CCD computer architecture,” Nature, vol. 592, no. 7853, pp. 209–213, 2021.
  12. [12]Quantinuum, “Quantuum Hardware Quantum Volume Data.” 2024 [Online]. Available at: https://github.com/CQCL/quantinuum-hardware-quantum-volume
  13. [13]Honeywell, “Achieving quantum volume 128 on the Honeywell Quantum Computer.” 2020 [Online]. Available at: https://www.honeywell.com/us/en/news/2020/09/achieving-quantum-volume-128-on-the-honeywell-quantum-computer
  14. [14]Quantinuum, “Demonstrating Benefits of Quantum Upgradable Design Strategy: System Model H1-2 Frist to Prove 2048 Quantum Volume.” 2021 [Online]. Available at: https://www.quantinuum.com/news/demonstrating-benefits-of-quantum-upgradable-design-strategy-system-model-h1-2-first-to-prove-2-048-quantum-volume
  15. [15]Quantinuum, “Quantinuum Announces Quantum Volume 4096 Achievement.” 2022 [Online]. Available at: https://www.quantinuum.com/news/quantinuum-announces-quantum-volume-4096-achievement
  16. [16]Quantinuum, “Quantinuum Sets New Record with Highest Ever Quantum Volume.” 2022 [Online]. Available at: https://www.quantinuum.com/news/quantinuum-sets-new-record-with-highest-ever-quantum-volume
  17. [17]Quantinuum, “Quantum Volume reaches 5 digits for the first time: 5 perspectives on what it means for quantum computing.” 2023 [Online]. Available at: https://www.quantinuum.com/news/quantum-volume-reaches-5-digits-for-the-first-time-5-perspectives-on-what-it-means-for-quantum-computing
  18. [18]S. A. Moses et al., “A race-track trapped-ion quantum processor,” Physical Review X, vol. 13, no. 4, p. 041052, 2023.
  19. [19]Quantinuum, “System Model H2.” 2024 [Online]. Available at: https://www.quantinuum.com/products-solutions/quantinuum-systems/system-model-h2#h2-resources
  20. [20]Quantinuum, “Quantinuum Dominates the Quantum Landscape: New World-Record in Quantum Volume.” 2025 [Online]. Available at: https://www.quantinuum.com/blog/quantum-volume-milestone
  21. [21]L. Abdurakhimov et al., “Technology and Performance Benchmarks of IQM’s 20-Qubit Quantum Computer,” arXiv preprint arXiv:2408.12433, 2024.
  22. [22]W. van der Schoot, R. Wezeman, P. T. Eendebak, N. M. P. Neumann, and F. Phillipson, “Evaluating three levels of quantum metrics on quantum-inspire hardware,” arXiv preprint arXiv:2310.01120, 2023.
  23. [23]T. Jaeger et al., “Modeling Quantum Volume Using Randomized Benchmarking of Room-Temperature NV Center Quantum Registers,” arXiv preprint arXiv:2412.12959, 2024.
  24. [24]L. S. Bishop, S. Bravyi, A. Cross, J. M. Gambetta, and J. Smolin, “Quantum volume,” Quantum Volume. Technical Report, 2017.
  25. [25]S. Aaronson and L. Chen, “Complexity-theoretic foundations of quantum supremacy experiments,” arXiv preprint arXiv:1612.05903, 2016.
  26. [26]F. Vatan and C. Williams, “Optimal quantum circuits for general two-qubit gates,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 69, no. 3, p. 032315, 2004.
  27. [27]R. Bistroń, M. Rudziński, R. Kukulski, and K. Życzkowski, “Benchmarking quantum devices beyond classical capabilities,” arXiv preprint arXiv:2502.02575, 2025.